Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 262
Filter
1.
Toxicol Res (Camb) ; 13(2): tfae057, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38623091

ABSTRACT

Objective: The rhizome of Atractylodes macrocephala Koidz. (Asteraceae), called Atractylodes macrocephala rhizome (AMR) and known by its traditional name Bai Zhu, is a prominent Chinese herbal medicine employed for preventing miscarriage. However, our previous study revealed that high dosages of AMR administered during pregnancy could cause embryotoxicity but the specific embryotoxic components and their underlying mechanisms remain unclear. This study aimed to screen and identify the potential embryotoxic components of AMR. Methods: The AMR extracts and sub-fractions were analyzed by thin layer chromatography and subsequently screened by in vitro mouse limb bud micromass and mouse whole embryo culture bioassays. The embryotoxic fractions from AMR were further evaluated in vivo using a pregnant mouse model. The structures of the potential embryotoxic components were analyzed using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). Results: In vitro and in vivo bioassays revealed that AMR glycoside-enriched sub-fractions (AMR-A-IIa and AMR-A-IIb) exhibited potential embryotoxicity. These sub-fractions, when administered to pregnant animals, increased the incidence of stillbirth and congenital limb malformations. MS spectrometry analysis identified cycasin derivatives in both sub-fractions, suggesting their possible role in the observed limb malformations. However, further experiments are necessary to validate this hypothesis and to elucidate the underlying mechanisms. Conclusions: Our study provides significant scientific evidence on the pharmacotoxicity of AMR, which is important for the safe clinical application of commonly used Chinese herbal medicines during pregnancy.

2.
Heliyon ; 10(7): e27508, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560254

ABSTRACT

Objective: To explore the effect of human urine-derived stem cells (husc) in improving the neurological function of rats with cerebral ischemia-reperfusion (CIR), and report new molecular network by bioinformatics, combined with experiment validation. Methods: After CIR model was established, and husc were transplanted into the lateral ventricle of rats,neurological severe score (NSS) andgene network analysis were performed. Firstly, we input the keywords "Cerebral reperfusion" and "human urine stem cells" into Genecard database and merged data with findings from PubMed so as to get their targets genes, and downloaded them to make Venny intersection plot. Then, Gene ontology (GO) analysis, kyoto encyclopedia of genes and genomes (KEGG) pathway analysis and protein-protein interaction (PPI) were performed to construct molecular network of core genes. Lastly, the expressional level of core genes was validated via quantitative real-time polymerase chain reaction (qRT-PCR), and localized by immunofluorescence. Results: Compared with the Sham group, the neurological function of CIR rats was significantly improved after the injection of husc into the lateral ventricle; at 14 days, P = 0.028, which was statistically significant. There were 258 overlapping genes between CIR and husc, and integrated with 252 genes screened from PubMed and CNKI. GO enrichment analysis were mainly involved neutrophil degranulation, neutrophil activation in immune response and platelet positive regulation of degranulation, Hemostasis, blood coagulation, coagulation, etc. KEGG pathway analysis was mainly involved in complement and coagulation cascades, ECM-receptor. Hub genes screened by Cytoscape consist ofCD44, ACTB, FN1, ITGB1, PLG, CASP3, ALB, HSP90AA1, EGF, GAPDH. Lastly, qRT-PCR results showed statistic significance (P < 0.05) in ALB, CD44 and EGF before and after treatment, and EGF immunostaining was localized in neuron of cortex. Conclusion: husc transplantation showed a positive effect in improving neural function of CIR rats, and underlying mechanism is involved in CD44, ALB, and EGF network.

3.
Postgrad Med J ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38679808

ABSTRACT

BACKGROUND: Low back pain (LBP) is a leading cause of disability worldwide and has posed numerous health and socioeconomic challenges. This study compared whether nonsteroidal anti-inflammatory drugs (NSAIDs) in combination with tramadol, tizanidine or placebo would be the best treatment regime to improve the Roland Morris Disability Questionnaire (RMDQ) scores at 1 week. METHODS: This was a multi-center, double-blind, randomized, and placebo-controlled trial including adult patients with acute LBP and sciatica in three emergency departments in Hong Kong. Patients were randomized to the receive tramadol 50 mg, tizanidine 2 mg, or placebo every 6 hours for 2 weeks in a 1:1:1 ratio. The RMDQ and other secondary outcomes were measured at baseline, Day 2, 7, 14, 21, and 28. Data were analyzed on an intention to treat basis. Crude and adjusted mean differences in the changes of RMDQ and NRS scores from baseline to Day 7 between tizanidine/tramadol and placebo were determined with 95% confidence intervals. RESULTS: Two hundred and ninety-one patients were analyzed with the mean age of 47.4 years and 57.7% were male. The primary outcome of mean difference in RMDQs on Day 7 (compared with baseline) was non-significant for tizanidine compared with placebo (adjusted mean difference - 0.56, 95% CI -2.48 to 1.37) and tramadol compared with placebo (adjusted mean difference - 0.85, 95% CI -2.80 to 1.10). Only 23.7% were fully compliant to the treatment allocated. Complier Average Causal Effect analysis also showed no difference in the primary outcome for the tizanidine and tramadol versus placebo. CONCLUSION: Among patients with acute LBP and sciatica presenting to the ED, adding tramadol or tizanidine to diclofenac did not improve functional recovery.

4.
Biomed Pharmacother ; 173: 116395, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460364

ABSTRACT

Dendrobium officinale (DEN) is recognized as a kind of functional food that can effectively ameliorate endocrine and metabolic disruptions. This study delved into the pharmacological mechanism of DEN on hepatic lipotoxicity associated with Type II diabetes mellitus (T2DM). In vivo study experiments on db/db mice indicated that DEN treatment notably enhanced liver function, decreased blood lipid levels, and improved insulin sensitivity. Non-targeted metabolomics analysis revealed that DEN significantly ameliorated metabolism pathways, including lipoic acid, linoleic acid, bile secretion, and the alanine/aspartate/glutamate metabolism, as well as taurine and hypotaurine metabolism. Transcriptomics analysis demonstrated DEN treatment could modulate the expression of genes such as Cpt1b, Scd1, G6pc2, Fos, Adrb2, Atp2a1, Ppp1r1b, and Cyp7a1. Furthermore, Proteomics analysis indicated that the beneficial effect of DEN on lipid metabolism was linked to pathways like AMPK and PPAR signaling. The integrative analysis of multi-omics revealed that the PPAR-RXR signaling was critical to the therapeutic effect of DEN on T2DM-induced fatty liver. Additionally, in vitro study on AML-12 cells confirmed that DEN counteract PA-induced lipid accumulation by activating the PPAR-RXR pathway. Overall, these findings suggested that DEN exhibited the potential to mitigate T2DM-induced hepatic lipo-toxicity and manage lipid imbalances in T2DM.


Subject(s)
Dendrobium , Diabetes Mellitus, Type 2 , Mice , Animals , Lipid Metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Multiomics , Liver , Signal Transduction , Lipids/pharmacology , Mice, Inbred C57BL
5.
Medicine (Baltimore) ; 103(12): e37613, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517992

ABSTRACT

Sacubitril/Valsartan, the combination of angiotensin receptor inhibitor and neprilysin inhibitor, is now becoming the class 1 recommendation for HFrEF. Some studies have shown the positive effect of Sacubitril/Valsartan on HFrEF cancer patients, while there is devoid of evidence about the effect of this drug in aged cancer patients with HFmrEF and HFpEF. By searching the patients with a diagnosis of both cancer and Heart failure (HF) over 65, the patients who had received treatment with Sacubitril/Valsartan were selected as the candidates for Sacubitril/Valsartan group, and the patients who had received conventional HF therapy without Sacubitril/Valsartan were chosen as the control group. Data were collected for up to 9 months. We filtered 38 patients and 50 patients valid for Sacubitril/Valsartan group and control group, respectively. After initiation of heart failure management, our study found a better cardiac condition in Sacubitril/Valsartan group, having better LVEF, LVFS, NT-proBNP in 3rd, 6th, 9th month (P < .05) and better NYHA function classification after the treatment. We also observed fewer cases of deterioration on LAD (P = .029) and LVEDD (P = .023) in Sacubitril/Valsartan group. In subgroup analysis, our study showed that all 3 kinds of HF patients had better LVEF, LVFS, and NT-proBNP in Sacubitril/Valsartan group (P < .05). Our study further indicated that Sacubitril/Valsartan can improve cardiac function and benefit cardiac remolding in aged cancer patients of all 3 kinds of HF. This is the first study to provide new evidence for the use of Sacubitril/Valsartan in aged cancer patients of 3 kinds of HF.


Subject(s)
Aminobutyrates , Heart Failure , Neoplasms , Aged , Humans , Angiotensin Receptor Antagonists/therapeutic use , Biphenyl Compounds/therapeutic use , Drug Combinations , Neoplasms/complications , Neoplasms/drug therapy , Stroke Volume , Tetrazoles , Valsartan/therapeutic use
6.
Gene ; 905: 148219, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38286267

ABSTRACT

OBJECTIVE: To examine the therapeutic mechanism of astragaloside IV (AS-IV) in the management of retinal ganglion cell (RGC) injury induced by high glucose (HG), a comprehensive approach involving the integration of network pharmacology and conducting in vitro and in vivo experiments was utilized. METHODS: A rat model of diabetic retinopathy (DR) injury was created by administering streptozotocin through intraperitoneal injection. Additionally, a model of RGC injury induced by HG was established using a glucose concentration of 0.3 mmol/mL. Optical coherence tomography (OCT) images were captured 8 weeks after the injection of AS-IV. AS-IV and FBS were added to the culture medium and incubated for 48 h. The viability of cells was assessed using a CCK-8 assay, while the content of reactive oxygen species (ROS) was measured using DCFH-DA. Apoptosis was evaluated using Annexin V-PI. To identify the targets of AS-IV, hyperglycemia, and RGC, publicly available databases were utilized. The Metascape platform was employed for conducting GO and KEGG enrichment analyses. The STRING database in conjunction with Cytoscape 3.7.2 was used to determine common targets of protein-protein interactions (PPIs) and to identify the top 10 core target proteins in the RGC based on the MCC algorithm. qRT-PCR was used to measure the mRNA expression levels of the top10 core target proteins in RGCs. RESULTS: OCT detection indicated that the thickness of the outer nucleus, and inner and outer accessory layers of the retina increased in the AS-IV treated retina compared to that in the DM group but decreased compared to that in the CON group. Coculturing RGC cells with AS-IV after HG induction resulted in a significant increase in cell viability and a decrease in ROS and apoptosis, suggesting that AS-IV can reduce damage to RGC cells caused by high glucose levels by inhibiting oxidative stress. There were 14 potential targets of AS-IV in the treatment of RGC damage induced by high glucose levels. The top 10 core target proteins identified by the MCC algorithm were HIF1α, AKT1, CTNNB1, SMAD2, IL6, SMAD3, IL1ß, PPARG, TGFß1, and NOTCH3. qRT-PCR analysis showed that AS-IV could upregulate the mRNA expression levels of SMAD3, TGF-ß1, and NOTCH3, and downregulate the mRNA expression levels of HIF1α, AKT1, CTNNB1, SMAD2, SMAD3, and IL-1ß in high glucose-induced RGC cells. CONCLUSION: The findings of this study validate the efficacy of astragaloside IV in the treatment of DR and shed light on the molecular network involved. Specifically, HIF1α, AKT1, CTNNB1, SMAD2, SMAD3, and IL-1ß were identified as the crucial candidate molecules responsible for the protective effects of astragaloside IV on RGCs.


Subject(s)
Diabetic Retinopathy , Retinal Ganglion Cells , Saponins , Triterpenes , Rats , Animals , Retinal Ganglion Cells/metabolism , Reactive Oxygen Species/metabolism , Apoptosis , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/genetics , Glucose/pharmacology , Glucose/metabolism , Computational Biology , RNA, Messenger/metabolism
7.
Article in English | MEDLINE | ID: mdl-38204243

ABSTRACT

BACKGROUND: Retinal aging is one of the common public health problems caused by population aging and has become an important cause of acquired vision loss in adults. The aim of this study was to determine the role of human umbilical cord mesenchymal stem cells (hUCMSCs) in delaying retinal ganglion cell (RGC) aging and part of the network of molecular mechanisms involved. METHODS: A retinal ganglion cell senescence model was established in vitro and treated with UCMSC. Successful establishment of the senescence system was demonstrated using ß- galactosidase staining. The ameliorative effect of MSC on senescence was demonstrated using CCK8 cell viability and Annexin V-PI apoptosis staining. The relevant targets of RGC, MSC, and senescence were mainly obtained by searching the GeneCards database. The protein interaction network among the relevant targets was constructed using the String database and Cytoscape, and 10 key target genes were calculated based on the MCC algorithm, based on which Gene ontologies (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were performed. Changes in relevant target genes were detected using real-time fluorescence quantitative PCR and the mechanism of action of UCMSC was determined by RNA interference. RESULTS: ß-galactosidase staining showed that UCMSC significantly reduced the positive results of RGC. The retinal aging process was alleviated. The bioinformatics screen yielded 201 shared genes. 10 key genes were selected by the MCC algorithm, including vascular endothelial growth factor A (VEGFA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), albumin (ALB), interleukin- 6 (IL6), tumor necrosis factor (TNF), tumor protein P53 (TP53), insulin (INS), matrix metalloproteinase 9 (MMP9), epidermal growth factor (EGF), interleukin-1ß (IL1B), and enrichment to related transferase activity and kinase activity regulated biological processes involved in oxidative stress and inflammation related pathways. In addition, PCR results showed that all the above molecules were altered in expression after UCMSC involvement. CONCLUSION: This experiment demonstrated the role of UCMSC in delaying retinal ganglion cell senescence and further elucidated that UCMSC may be associated with the activation of VEGFA, TP53, ALB, GAPDH, IL6, IL1B, MMP9 genes and the inhibition of INS, EGF, and TNF in delaying retinal senescence.

8.
Eur J Med Res ; 29(1): 60, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38243268

ABSTRACT

OBJECTIVE: To investigate the effect of salidroside (SAL) in protecting retinal ganglion cell (RGC) from pyroptosis and explore associated molecular network mechanism in diabetic retinapathy (DR) rats. METHODS: HE, Nissl and immunofluorescence staining were used to observe the retinal morphological change, and the related target genes for salidroside, DR and pyroptosis were downloaded from GeneCard database. Then Venny, PPI, GO, KEGG analysis and molecular docking were used to reveal molecular network mechanism of SAL in inhibiting the pyroptosis of RGC. Lastly, all hub genes were confirmed by using qPCR. RESULTS: HE and Nissl staining showed that SAL could improve the pathological structure known as pyroptosis in diabetic retina, and the fluorescence detection of pyroptosis marker in DM group was the strongest, while they decreased in the SAL group(P < 0.05)). Network pharmacological analysis showed 6 intersecting genes were obtained by venny analysis. GO and KEGG analysis showed 9 biological process, 3 molecular function and 3 signaling pathways were involved. Importantly, molecular docking showed that NFE2L2, NFKB1, NLRP3, PARK2 and SIRT1 could combine with salidroside, and qPCR validates the convincible change of CASP3, NFE2L2, NFKB1, NLRP3, PARK2 and SIRT1. CONCLUSION: Salidroside can significantly improve diabetes-inducedRGC pyrotosis in retina, in which, the underlying mechanism is associated with the NLRP3, NFEZL2 and NGKB1 regulation.


Subject(s)
Diabetes Mellitus , Glucosides , Phenols , Retinal Diseases , Animals , Rats , Retinal Ganglion Cells , Sirtuin 1 , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Molecular Docking Simulation , Network Pharmacology , Pyroptosis
9.
J Ethnopharmacol ; 321: 117437, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37981116

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium officinale Kimura & Migo (DEN) is a traditional medicine in China since Han dynasty. Decoction of its stem is often used in the treatment of Type-II diabetes (T2D), which is a typical metabolic disease accompanied with the impaired metabolic function of blood glucose and lipid. AIM OF THE STUDY: Our study aimed to investigate the role of gut microbiota in differentiating DEN from different sources and its related pathway in the alleviation of metabolic syndromes induced by T2D. MATERIALS AND METHODS: The aqueous extracts of four commercially available Dendrobium (DEN-1∼4) were prepared and screened through an in-vitro fermentation system. Based on their alterations in monosaccharide composition and short chain fatty acids (SCFA) formation during fermentation with db/db faecal fluid, one DEN extract was selected for further in vivo verification. The selected Dendrobium (DEN-4) was orally administered to db/db mice for 16 days once daily at the dosage of 200 mg/kg followed by evaluating its effect on blood glucose level, liver function and intestinal microenvironment including alterations of intestinal integrity and gut microbiota composition. In addition, liver metabolomics analysis was employed to reveal the related metabolic pathways. RESULTS: Different extent of SCFA formation and utilization of monosaccharides were observed for the extracts of four DEN from different sources with a negative correlation between SCFA level and the ratio of Utilized glucose/Utilized mannose observed in the in-vitro fermentation system with db/db faecal fluid. DEN-4 with the highest SCFA formation during the in-vitro fermentation was selected and exhibited significantly hypoglycaemic effect in db/db mice with the alleviation of hepatic steatosis and impaired lipid homeostasis. Further mechanistic studies revealed that orally administered DEN-4 could improve the intestinal integrity of db/db mice via elevating their tight junction protein (ZO-1 and Occludin) expression in the colon and improve the diversity of gut microbiota with enhanced formation of SCFA. Moreover, metabolomics and KEGG pathway analysis of liver tissues suggested that the alleviated metabolic syndrome in db/db mice by DEN-4 might possibly be achieved through activation of PPAR pathway. CONCLUSION: Our current study not only revealed the potential of gut microbiota in differentiating DEN from different sources, but also demonstrated that DEN exhibited its beneficial effect on the T2D induced metabolic syndrome possibly through enhancement of intestinal integrity and activation of PPAR pathway via gut-liver axis in db/db mice.


Subject(s)
Dendrobium , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Metabolic Syndrome , Mice , Animals , Blood Glucose/metabolism , Metabolic Syndrome/drug therapy , Fermentation , Peroxisome Proliferator-Activated Receptors/metabolism , Mice, Inbred C57BL , Mice, Inbred Strains , Fatty Acids, Volatile/analysis , Diabetes Mellitus, Type 2/drug therapy , Monosaccharides
10.
Opt Lett ; 48(23): 6336-6339, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38039261

ABSTRACT

Due to the influence of chemical reactions, phase change, and other phenomena, the combustion system is a complicated high-temperature environment. Therefore, the spatio-temporally resolved monitoring of the temperature field is crucial for gaining a comprehensive understanding of the intricate combustion environment. In this study, we proposed a fast and high-precision temperature measurement technique based on mid-infrared (MIR) dual-comb spectroscopy with a high spectral resolution and fast refresh rate. Based on this technique, the spatio-temporally resolved measurement of a non-uniform temperature field was achieved along the laser path. To verify the capability of DCS for temperature measurement, the bandhead ro-vibrational lines of the CO2 molecule were acquired, and the 1-σ uncertainty of the retrieved temperature was 3.2°C at 800°C within 100 ms. The results demonstrate the potential of our fast and high-precision laser diagnostic technique which can be further applied to combustion kinetics.

11.
Org Lett ; 25(50): 9002-9007, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38051027

ABSTRACT

Nucleoside analogues are effective antiviral agents, and the continuous emergence of pathogenic viruses demands the development of novel and structurally diverse analogues. Here, we present the design and synthesis of novel nucleoside analogues with a carbobicyclic core, which mimics the conformation of natural ribonucleosides. Employing a divergent synthetic route featuring an intermolecular Diels-Alder reaction, we successfully synthesized carbobicyclic nucleoside analogues with high antiviral efficacy against respiratory syncytial virus.


Subject(s)
Nucleosides , Ribonucleosides , Antiviral Agents/pharmacology , Molecular Conformation
12.
Exp Gerontol ; 184: 112330, 2023 12.
Article in English | MEDLINE | ID: mdl-37967592

ABSTRACT

Hyperhomocysteinemia (HHcy) is an independent risk factor of atherosclerosis (AS). Some reports have shown that homocysteine (Hcy) could accelerate the development of AS by promoting endothelial cell senescence. miRNAs were widely involved in the pathophysiology of HHcy. However, few studies have focused on the changes of miRNA-mRNA networks in the artery of HHcy patients. For this reason, RNA-sequencing was adopted to investigate the expression of miRNA and mRNA in HHcy model mouse arteries. We found that the expression of 216 mRNAs and 48 miRNAs were significantly changed. Using TargetScan and miRDB web tools, 29 miRNA-mRNA pairs were predicted. Notably, miR-20b-5p and FJX1 shared the highest predicted score in TargetScan, and further study indicated that the miR-20b-5p inhibitor significantly upregulated the FJX1 expression in HHcy human umbilical vein endothelial cells (HUVECs) model. PPI analysis revealed an important sub-network which was centered on CDK1. Gene ontology (GO) enrichment analysis showed that HHcy had a significant effect on cell cycle. Further experiments found that Hcy management increased reactive oxygen species (ROS) generation, the activity of senescence associated ß-galactosidase (SA-ß-gal) and the protein expression of p16 and p21 in HUVECs, which were rescued by miR-20b-5p inhibitor. In general, our research indicated the important role of miR-20b-5p in HHcy-related endothelial cell senescence.


Subject(s)
Atherosclerosis , Hyperhomocysteinemia , MicroRNAs , Animals , Mice , Atherosclerosis/genetics , Cellular Senescence/genetics , Human Umbilical Vein Endothelial Cells , Hyperhomocysteinemia/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/metabolism
13.
Gut ; 72(12): 2272-2285, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37770127

ABSTRACT

OBJECTIVE: Gut microbiota is a key player in dictating immunotherapy response. We aimed to explore the immunomodulatory effect of probiotic Lactobacillus gallinarum and its role in improving anti-programmed cell death protein 1 (PD1) efficacy against colorectal cancer (CRC). DESIGN: The effects of L. gallinarum in anti-PD1 response were assessed in syngeneic mouse models and azoxymethane/dextran sulfate sodium-induced CRC model. The change of immune landscape was identified by multicolour flow cytometry and validated by immunohistochemistry staining and in vitro functional assays. Liquid chromatography-mass spectrometry was performed to identify the functional metabolites. RESULTS: L. gallinarum significantly improved anti-PD1 efficacy in two syngeneic mouse models with different microsatellite instability (MSI) statuses (MSI-high for MC38, MSI-low for CT26). Such effect was confirmed in CRC tumourigenesis model. L. gallinarum synergised with anti-PD1 therapy by reducing Foxp3+ CD25+ regulatory T cell (Treg) intratumoural infiltration, and enhancing effector function of CD8+ T cells. L. gallinarum-derived indole-3-carboxylic acid (ICA) was identified as the functional metabolite. Mechanistically, ICA inhibited indoleamine 2,3-dioxygenase (IDO1) expression, therefore suppressing kynurenine (Kyn) production in tumours. ICA also competed with Kyn for binding site on aryl hydrocarbon receptor (AHR) and antagonised Kyn binding on CD4+ T cells, thereby inhibiting Treg differentiation in vitro. ICA phenocopied L. gallinarum effect and significantly improved anti-PD1 efficacy in vivo, which could be reversed by Kyn supplementation. CONCLUSION: L. gallinarum-derived ICA improved anti-PD1 efficacy in CRC through suppressing CD4+Treg differentiation and enhancing CD8+T cell function by modulating the IDO1/Kyn/AHR axis. L. gallinarum is a potential adjuvant to augment anti-PD1 efficacy against CRC.


Subject(s)
Colorectal Neoplasms , Immune Checkpoint Inhibitors , Kynurenine , Lactobacillus , Animals , Mice , CD8-Positive T-Lymphocytes , Colorectal Neoplasms/drug therapy , Kynurenine/metabolism , Receptors, Aryl Hydrocarbon/drug effects , Receptors, Aryl Hydrocarbon/metabolism , T-Lymphocytes, Regulatory , Lactobacillus/chemistry , Programmed Cell Death 1 Receptor/drug effects , Programmed Cell Death 1 Receptor/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Bacterial Lysates/pharmacology , Bacterial Lysates/therapeutic use
14.
Pharm Res ; 40(11): 2627-2638, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37667147

ABSTRACT

PURPOSE: Our previous screening studies identified Oroxylin A (OXA) as a strong inhibitor on the carboxyolesterase mediated hydrolysis of irinotecan to SN-38. The current study employed a whole-body physiologically based pharmacokinetic (PBPK) modeling approach to investigate the underlying mechanisms of the carboxylesterase-mediated pharmacokinetics interactions between irinotecan and OXA in rats. METHODS: Firstly, rats received irinotecan intravenous treatment at 35 µmol/kg without or with oral OXA pretreatment (2800 µmol/kg) daily for 5 days. On day 5, blood and tissues were collected for analyses of irinotecan/SN-38 concentrations and carboxylesterase expression. In addition, effects of OXA on the enzyme kinetics of irinotecan hydrolysis and unbound fractions of irinotecan and SN-38 in rat plasma, liver and intestine were also determined. Finally, a PBPK model that integrated the physiological parameters, enzyme kinetics, and physicochemical properties of irinotecan and OXA was developed. RESULTS: Our PBPK model could accurately predict the pharmacokinetic profiles of irinotecan/SN-38, with AUC0-6h and Cmax values within ±27% of observed values. When OXA was included as a carboxylesterase inhibitor, the model could also predict the irinotecan/SN-38 plasma concentrations within twofold of those observed. In addition, the PBPK model indicated inhibition of carboxylesterase-mediated hydrolysis of irinotecan in the intestinal mucosa as the major underlying mechanism for the pharmacokinetics interactions between irinotecan and OXA. CONCLUSION: A whole-body PBPK model was successfully developed to not only predict the impact of oral OXA pretreatment on the pharmacokinetics profiles of irinotecan but also reveal its inhibition on the intestinal carboxylesterase as the major underlying mechanism.


Subject(s)
Flavonoids , Liver , Rats , Animals , Irinotecan/pharmacokinetics , Liver/metabolism , Intestines , Camptothecin/pharmacokinetics
15.
Eur J Pharmacol ; 958: 175947, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37659689

ABSTRACT

OBJECTIVE: To reveal the core mechanism of berberine (BBR) in the treatment of diabetic retinopathy (DR), by using Four-dimensional independent data acquisition (4D-DIA) proteomics combined bioinformatics analysis with experimental validation. METHODS: DR injury model was established by injecting streptozotocin intraperitoneally. At 8 weeks after BBR administration, optical coherence tomography (OTC) photos and Hematoxylin-eosin staining from retina in each group were performed, then the retina was collected for 4D-DIA quantitative proteomics detection. Moreover, difference protein analysis, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, protein-protein interaction (PPI) network, as well as molecular docking was performed, respectively. In the part of experiment, Western blot (WB) and immunofluorescent staining was used to confirm the change and distribution of carbonic anhydrase 1 (CA1), one of the most important molecules from quantitative PCR detection. Lastly, RNA knockdown was used to determine the crucial role of CA1 in retinal pigment epithelial cells (RPEs) administrated with berberine. RESULTS: OCT detection showed that the outer nucleus, inner layer and outer accessory layer of RPEs were thinned in DR group, compared with in sham one, while they were thickened after berberine administration, when compared with in DR group. 10 proteins were screened out by using proteomic analysis and Venny cross plot, in which, denn domain containing 1A (DENND1A) and UTP6 small subunit processome component (UTP6) was down-regulated, while ATPase copper transporting alpha (ATP7A), periplakin (PPL), osteoglycin (OGN), nse1 Homolog (NSMCE1), membrane metalloendopeptidase (MME), lim domain only 4 (LMO4), CA1 and fibronectin 1 (FN1) was up-regulated in DR group, and the BBR treatment can effectively reverse their expressions. PPI results showed that 10 proteins shared interactions with each other, but only ATP7A, FN1 and OGN exhibited directly associated with each other. Moreover, we enlarged the linked relation up to 15 genes in network, based on 10 proteins found from proteomics detection, so as to perform deep GO and KEGG analysis. As a result, the most important biological process is involving rRNA processing; the most important cell component is small subunit processor; the most important molecular function is Phospholipid binding; the KEGG pathway was Ribosome biogenesis in eukaryotes. Moreover, molecular docking showed that LMO4, ATP7A, PPL, NSMCE1, MME, CA1 could form a stable molecular binding pattern with BBR. Of these, the mRNA expression of CA1, PPL and ATP7A and the protein level of CA1 was increased in DR, and decreased in BBR group. Lastly, CA1 RNA knockdown confirmed the crucial role of CA1 in RPE administered with BBR. CONCLUSION: The present findings confirmed the role of BBR in DR treatment and explained associated molecular network mechanism, in which, CA1 could be considered as a crucial candidate in the protection of RPEs with berberine treatment.

16.
Opt Express ; 31(18): 29187-29195, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37710724

ABSTRACT

Dimerization reactions play a critical role in various fields of research, including cell biology, biomedicine, and chemistry. In particular, the dimerization reaction of 2NO2⇌N2O4 has been extensively applied in pollution control and raw material preparation. Spectroscopy, as a powerful tool for investigating molecular structures and reaction kinetics, has been increasingly employed to study dimerization reactions in recent years. In this study, we successfully demonstrated the application of dual-comb spectroscopy (DCS) to analyze NO2 dimerization reactions, making the first report on the application of this technique in this context. Parallel measurements of NO2 and N2O4 fingerprints spectra with high resolution at 3000 cm-1 was performed, benefiting from the unprecedented broadband and high-precision capability of DCS. The absorption cross-sections of N2O4 from 296 to 343 K was obtained from the measured spectra, which contributes to further research on the molecular spectrum of N2O4. These results demonstrate the potential of DCS for studying the dimerization reaction mechanism.

17.
Psychopharmacology (Berl) ; 240(9): 1865-1876, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37490132

ABSTRACT

BACKGROUND: Diabetic encephalopathy is manifested by cognitive dysfunction. Salidroside, a nature compound isolated from Rhodiola rosea L, has the effects of anti-inflammatory and antioxidant, hypoglycemic and lipid-lowering, improving insulin resistance, inhibiting cell apoptosis, and protecting neurons. However, the mechanism by which salidroside alleviates neuronal degeneration and improves learning and memory impairment in diabetic mice remains unclear. OBJECTIVE: To investigate the effects and mechanisms of salidroside on hippocampal neurons in streptozotocin-induced diabetic mice. MATERIALS AND METHODS: C57BL/6 mice were randomly divided into 4 groups to receive either sham (control group (CON)), diabetes mellitus (diabetes group (DM)), diabetes mellitus + salidroside (salidroside group (DM + SAL)), and diabetes mellitus + salidroside + phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (diabetes mellitus + salidroside + LY294002 group (DM + SAL + LY294002)). After 12 weeks of diabetes onset, the cognitive behaviors were tested using Morris water maze. The number of hippocampal neurons was detected by Nissl staining. The expressions of PI3K, p-PI3K, Akt, p-Akt, GSK-3ß, p-GSK-3ß, cleaved caspase-3, caspase-3, Bax, Bcl-2, MAP2, and SYN in the hippocampus were detected by Western blot. Moreover, the expression of MAP2 and SYN in the hippocampus was further confirmed by immunofluorescence staining. RESULTS: Salidroside increased the time of diabetic mice in the platform quadrant and reduced the escape latency of diabetic mice. Salidroside also increased the expression of p-PI3K, p-Akt, p-GSK-3ß, MAP2, SYN, Bcl-2, while suppressed the expression of cleaved caspase-3, caspase3, and Bax in the DM + SAL group compared with the DM group (P < 0.05). The Nissl staining showed that the number of hippocampus neurons in the DM + SAL group was increased with the intact, compact, and regular arrangement, compared with the DM groups (P < 0.05). Interestingly, the protective effects of salidroside on diabetic cognitive dysfunction, hippocampal morphological alterations, and protein expressions were abolished by inhibition of PI3K with LY294002. CONCLUSIONS: Salidroside exerts neuroprotective properties in diabetic cognitive dysfunction partly via activating the PI3K/Akt/GSK-3ß signaling pathway.


Subject(s)
Brain Diseases , Hippocampus , Hypoglycemia , Neuroprotective Agents , Animals , Mice , Apoptosis/drug effects , bcl-2-Associated X Protein/metabolism , Caspase 3/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Mice, Inbred C57BL , Neurons , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinase/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , Brain Diseases/drug therapy , Hypoglycemia/drug therapy
18.
J Cardiovasc Pharmacol Ther ; 28: 10742484231174296, 2023.
Article in English | MEDLINE | ID: mdl-37261980

ABSTRACT

Objective: To investigate the protective effect of nicorandil on contrast-induced acute kidney injury (CIAKI) in patients with acute ST-segment elevation myocardial infarction (STEMI) after emergency percutaneous coronary intervention (PCI). Methods: This is a single-center, retrospective control study. A total of 156 patients with STEMI were divided into the nicorandil group (n = 55) and the control group (n = 101). The incidence of CIAKI, defined as an increase of >25% or absolute values > 44.2 µmol/L in serum creatinine (Scr) from baseline within 72 h of exposure to a contrast agent after exclusion of other causes, was the primary endpoint. The secondary endpoints were: (1) changes of Scr, estimated glomerular filtration rate (eGFR), uric acid, and ß2-microglobulin at 24/48/72 h and 5 to 7 days after PCI; (2) the peak value difference of creatine kinase isoenzymes (CK-MB) after PCI; (3) adverse events within 6 months after PCI. Results: The overall incidence of CIAKI was 21.8%; the incidence of CIAKI in the nicorandil group was significantly lower (12.7% [7/55]) than in the control group (26.7% [27/101]) (P = .043). Compared with the control group, Scr, uric acid, and ß2-microglobulin levels were lower, and the level of eGFR was higher in nicorandil group (P all < .05). The peak value of CK-MB in the nicorandil group was lower than that in the control group (105.30 [56.61, 232.04] vs 178.00 [77.08, 271.91]U/L, P = .042). There was no significant difference in adverse events between the 2 groups within 6 months after PCI. Moreover, multivariate logistic regression analysis showed that hypertension and diabetes were independent risk factors for CIAKI, while nicorandil treatment was a protective factor. Conclusion: Our data suggest that intravenous nicorandil after emergency PCI has a protective effect on the occurrence of CIAKI in STEMI patients.


Subject(s)
Acute Kidney Injury , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Humans , Nicorandil/adverse effects , Percutaneous Coronary Intervention/adverse effects , ST Elevation Myocardial Infarction/diagnostic imaging , ST Elevation Myocardial Infarction/therapy , Uric Acid/adverse effects , Retrospective Studies , Acute Kidney Injury/chemically induced , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Treatment Outcome
19.
Physiol Behav ; 268: 114231, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37172640

ABSTRACT

Locus coeruleus (LC) is a small nucleus located deep in the brainstem that contains the majority of central noradrenergic neurons, which provide the primary source of noradrenaline (NA) throughout the entire central nervous system (CNS).The release of neurotransmitter NA is considered to modulate arousal, sensory processing, attention, aversive and adaptive stress responses as well as high-order cognitive function and memory, with the highly ramified axonal arborizations of LC-NA neurons sending wide projections to the targeted brain areas. For over 30 years, LC was thought to be a homogeneous nucleus in structure and function due to the widespread uniform release of NA by LC-NA neurons and simultaneous action in several CNS regions, such as the prefrontal cortex, hippocampus, cerebellum, and spinal cord. However, recent advances in neuroscience tools have revealed that LC is probably not so homogeneous as we previous thought and exhibits heterogeneity in various aspects. Accumulating studies have shown that the functional complexity of LC may be attributed to its heterogeneity in developmental origin, projection patterns, topography distribution, morphology and molecular organization, electrophysiological properties and sex differences. This review will highlight the heterogeneity of LC and its critical role in modulating diverse behavioral outcomes.


Subject(s)
Locus Coeruleus , Neurons , Female , Male , Humans , Locus Coeruleus/anatomy & histology , Locus Coeruleus/physiology , Neurons/physiology , Spinal Cord , Brain , Norepinephrine
20.
PLoS One ; 18(4): e0274277, 2023.
Article in English | MEDLINE | ID: mdl-37053299

ABSTRACT

OBJECTIVE: Coronary artery disease (CAD) is a leading cause of death worldwide. Many studies in China and abroad have reported an association between the expression level of microRNA-155 and CAD; however, the results remain controversial. We aimed to comprehensively investigate this association based on a meta-analysis. METHODS: We first systematically searched eight Chinese and English databases, including China National Knowledge Infrastructure, Wanfang, China Science and Technology Journal Database, PubMed, Web of Science, Embase, Google Scholar, and Cochrane Library, to identify studies concerning the relationship between microRNA-155 levels and CAD published before February 7, 2021. The quality of the literature was assessed by the Newcastle-Ottawa Scale (NOS). Meta-analysis was performed using a random-effects model to calculate the standard mean difference with a 95% confidence interval (CI). RESULTS: Sixteen articles with a total of 2069 patients with CAD and 1338 controls were included. All the articles were of high quality according to the NOS. The meta-analysis showed that the mean level of microRNA-155 was significantly lower in patients with CAD than in controls. Based on subgroup analyses, the level of microRNA-155 in the plasma of CAD patients and in acute myocardial infarction (AMI) patients was significantly lower than that in controls, whereas this level in CAD patients with mild stenosis was significantly higher than that in controls. CONCLUSION: Our study indicates that the expression level of circulating microRNA-155 in patients with CAD is lower than that in a non-CAD group, suggesting a new possible reference index for the diagnosis and monitoring of patients with CAD.


Subject(s)
Circulating MicroRNA , Coronary Artery Disease , MicroRNAs , Myocardial Infarction , Humans , China , Circulating MicroRNA/genetics , Coronary Artery Disease/genetics , MicroRNAs/genetics , Myocardial Infarction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...